Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Computers, Materials and Continua ; 72(1):1685-1698, 2022.
Article in English | Scopus | ID: covidwho-1732650

ABSTRACT

Computerized tomography (CT) scans and X-rays play an important role in the diagnosis of COVID-19 and pneumonia. On the basis of the image analysis results of chest CT and X-rays, the severity of lung infection is monitored using a tool. Many researchers have done in diagnosis of lung infection in an accurate and efficient takes lot of time and inefficient. To overcome these issues, our proposed study implements four cascaded stages. First, for pre-processing, a mean filter is used. Second, texture feature extraction uses principal component analysis (PCA). Third, a modified whale optimization algorithm is used (MWOA) for a feature selection algorithm. The severity of lung infection is detected on the basis of age group. Fourth, image classification is done by using the proposedMWOAwith the salp swarm algorithm (MWOA-SSA). MWOA-SSA has an accuracy of 97%, whereas PCA and MWOA have accuracies of 81% and 86%. The sensitivity rate of the MWOA-SSA algorithm is better that of than PCA (84.4%) and MWOA (95.2%). MWOA-SSA outperforms other algorithms with a specificity of 97.8%. This proposed method improves the effective classification of lung affected images from large datasets. © 2022 Tech Science Press. All rights reserved.

2.
International Conference on Sustainable Expert Systems, ICSES 2020 ; 176 LNNS:169-184, 2021.
Article in English | Scopus | ID: covidwho-1265476

ABSTRACT

A novel type of coronavirus, now known under the acronym COVID-19, was initially discovered in the city of Wuhan, China. Since then, it has spread across the globe and now it is affecting over 210 countries worldwide. The number of confirmed cases is rapidly increasing and has recently reached over 14 million on July 18, 2020, with over 600,000 confirmed deaths. In the research presented within this paper, a new forecasting model to predict the number of confirmed cases of COVID-19 disease is proposed. The model proposed in this paper is a hybrid between machine learning adaptive neuro-fuzzy inference system and enhanced genetic algorithm metaheuristics. The enhanced genetic algorithm is applied to determine the parameters of the adaptive neuro-fuzzy inference system and to enhance the overall quality and performances of the prediction model. Proposed hybrid method was tested by using realistic official dataset on the COVID-19 outbreak in the state of China. In this paper, proposed approach was compared against multiple existing state-of-the-art techniques that were tested in the same environment, on the same datasets. Based on the simulation results and conducted comparative analysis, it is observed that the proposed hybrid approach has outperformed other sophisticated approaches and that it can be used as a tool for other time-series prediction. © 2021, The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

SELECTION OF CITATIONS
SEARCH DETAIL